Smart Retimers

The Evolution of the In-Vehicle Network

Interconnect technologies will play an important role in the overall connected car story to meet the needs of mass data transfer within the In-Vehicle Network. We have recently seen these types of challenges and a similar evolution in enterprise data centers, where intelligent systems running data-intensive workloads — such as Artificial Intelligence and Machine Learning — have drastically increased the overall design complexity.

Seamless Transition to PCIe® 5.0 Technology in System Implementations

In this PCI-SIG® hosted technical webinar, Astera Labs’ engineers explore the changes between PCIe 4.0 and PCIe 5.0 specifications, including signal integrity and system design challenges, where the right balance must be found between PCB materials, connector types and the use of signal conditioning devices for practical compute topologies. Through an objective analysis, the goal is to provide the audience with a methodology to optimize signal and link integrity performance, present best practices for system board design to support PCIe 5.0 technology applications, and test for system level interoperation.

PCI Express® 5.0 Architecture Channel Insertion Loss Budget

The upgrade from PCIe® 4.0 to PCIe 5.0 doubles the bandwidth from 16GT/s to 32GT/s but also suffers greater attenuation per unit distance, despite the PCIe 5.0 specification increasing the total insertion loss budget to 36dB. After deducting the loss budget for CPU package, AIC, and CEM connector, merely 16dB system board budget remains. Within the remaining budget, engineers need to consider safety margin for board loss variations due to temperature and humidity.

Retimer to EP segment
Simulating with Retimers for PCIe® 5.0

The design solution space for high-speed serial links is becoming increasingly complex with increasing data rates, diverse channel topologies, and tuning parameters for active components. PCI Express® (PCIe®) 5.0, at 32 GT/s, is a particularly relevant example of an application whose design solution space can be a daunting problem to tackle, given the performance-cost requirements of its end equipment. This paper is intended to help system designers navigate these design challenges by providing a how-to guide for defining, executing, and analyzing system-level simulations, including PCIe 5.0 Root Complex (RC), Retimer, and End Point (EP).

PCIe Retimers to the Rescue Webinar: PCI Express® Specifications Reach Their Full Potential

In this PCI-SIG® hosted webinar, Kurt Lender of Intel and Casey Morrison of Astera Labs offer solutions to address signal-integrity and channel insertion loss challenges to ensure the full potential of the increased bandwidth offered by PCIe® Gen 4.0 and 5.0 are achieved.

As PCIe specifications continue to double the transfer rates of previous generations, the technology can address various needs for demanding applications, while signal-integrity and channel insertion loss challenges arise as well. Retimers are mixed-signal analog/digital devices that are protocol-aware and able to fully recover data, extract the embedded clock and retransmit a fresh copy of the data using a clean clock. These devices are fully defined in the PCI Express base specification, including compliance testing, and are used to combat issues that PCI Express faces.